A Riemannian Approach to Diffusion Tensor Images Segmentation
نویسندگان
چکیده
We address the problem of the segmentation of cerebral white matter structures from diffusion tensor images. Our approach is grounded on the theoretically well-founded differential geometrical properties of the space of multivariate normal distributions. We introduce a variational formulation, in the level set framework, to estimate the optimal segmentation according to the following hypothesis: Diffusion tensors exhibit a Gaussian distribution in the different partitions. Moreover, we must respect the geometric constraints imposed by the interfaces existing among the cerebral structures and detected by the gradient of the diffusion tensor image. We validate our algorithm on synthetic data and report interesting results on real datasets. We focus on two structures of the white matter with different properties and respectively known as the corpus callosum and the corticospinal tract.
منابع مشابه
Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملRiemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images
In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in...
متن کاملSegmenting Fiber Bundles in Diffusion Tensor Images
We consider the problem of segmenting fiber bundles in diffusion tensor images. We cast this problem as a manifold clustering problem in which different fiber bundles correspond to different submanifolds of the space of diffusion tensors. We first learn a local representation of the diffusion tensor data using a generalization of the locally linear embedding (LLE) algorithm from Euclidean to di...
متن کاملTensor Processing for Texture and Colour Segmentation
In this paper, we propose an original approach for texture and colour segmentation based on the tensor processing of the nonlinear structure tensor. While the tensor structure is a well established tool for image segmentation, its advantages were only partly used because of the vector processing of that information. In this work, we use more appropriate definitions of tensor distance grounded i...
متن کاملA Fuzzy, Nonparametric Segmentation Framework for DTI and MRI Analysis
This paper presents a novel statistical fuzzy-segmentation method for diffusion tensor (DT) images and magnetic resonance (MR) images. Typical fuzzy-segmentation schemes, e.g. those based on fuzzyC-means (FCM), incorporate Gaussian class models which are inherently biased towards ellipsoidal clusters. Fiber bundles in DT images, however, comprise tensors that can inherently lie on more-complex ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 19 شماره
صفحات -
تاریخ انتشار 2005